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1 The Invariance Principle

1.1 Comparing random bits and Gaussians

Recall the Berry-Essen theorem, a quantitative version of the Central Limit Theorem:

Theorem 1.1 (Berry-Essen). Let X, ..., X, be independent random variables with E[X;] =
E[X}] =0 and E[X?] = 02, where Y1 02 =1. Let S = X1+ -+ X, and Z ~ N(0,1).
Then the CDF of S is O(f)-close to the CDF of Z, where =31 | E[X}].

The invariance principle relates the analysis of Boolean functions to the analysis of
functions over Gaussians. If we think of X7, ..., X, as independent random bits, then the
Berry-Essen theorem is a basic example of this principle.

Example 1.1. Let z1,...,2, ~ {£1}", and let

X1 = ajri, XQ = a2x2, e Xn = ApTp.

If we take S = Y1 | a;x;, then 0 = E[X;] = E[X}] with E[X?] = a? E[z?] = a?. Assume

that > | a? = 1. Then
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Rather than comparing the CDFs, it will be more useful for us to work with the following
notion of “closeness” of distributions: For any “nice” test function 1,



Example 1.2. One class of test functions would be

Yr(x) = Liz<sy-

This corresponds to CDF closeness:

P(S <t) = E[¢(5)] = E[¢(2)] = P(Z < 1).

Theorem 1.2. Let Xq,...,X, be independent random variables with E[X;] = E[X?] = 0
and E[X?] = 02, where ZZ 102 =1. Let S = X1+ -+ X, and Z ~ N(0,1), and let
v € C* with bounded 4th derivative. Then

[E[(S)] - E[(2)]] < [[9@]|eo - O(8),
where B =51 E[X]].

Remark 1.1. To deal with non-smooth test functions like the example above, we can
approximate 1; by 1y, where 1); is a smoothed version of 9; with 4th derivative < 1/§%:

This gives
|E[pe(S)] = E[ve(2)]| < 0(6) + O(B) - 5 < O(9),

and we can then pick § = g1/5.

Why do we need to care about the size of the derivatives? To differentiate % from

Z ~ N(0,1), we could try to use rapidly oscillating functions such as ¢, (x) = cos(y/n-2mx).
Then we would have E[1)(S)] = 1 and E[¢,(Z)] === 0.



Proof. To compare the sum X; + --- + X,, of random variables to Z ~ N(0,1), we can
write Z = Z1+- - -+ Zy,, where the Z are independent Gaussians with Z; ~ N(0,0?). Note
that E[Z;] = E[X;] = 0, IE[ZQ] =o0? = E[X?], and E[Z}] = 0 for all i.

How can we replace X1 + -+ + X,, with Z1 4+ --- + Z,7 One way is to replace one X;
with a Z; at a time.! Define the hybrid random variables

H=Z1++Zi+ Xipn+ - Xy
Thus,
Ho=X1+--Xn=S, Hy=2Z1++7Zn=2

Now we can say
|E[v(S)] — E[v(2)] = | E[(Ho)] — E[(Hn)]
= ZEW’(HFQ] — E[y(H;)]
Using the triangle inequality, )

< Z |E[¢o(Hi-1)] — E[¢(H,)]|

H,_1 and H; only differ in the ¢-th summand. In particular, we can write H;_1 = U + Z;
and H; =U + X;, where U = Z1 +--- Z;_1 + X;41 -+ + X, is independent of Z; and X;.
So it suffices to show that |E[¢Y(U + X;)] — E[¢(U + Z;)]| is small. The idea, then, is to
Taylor expand 1 around U.
Fix the value U = u, and write
2 3 54

Y 0
W+ 8) = u) +9'(w) 6+ 9" (u) - o + 9" (w) - 5 + D) 7,

where u* is between u and u + §. Now we can write
X? X X4
G(U +X5) = 9(U) + 9/ (U) - Xi +4"(U) - 5 + 0" (0) - 5 + 90w
7?2 zZ}
w(UJrZi)Zw(U)+¢/(U)'Zi+¢”(U)'7§+¢"/( ) +1/J ) (u* D

where U* is between U and U + X; and U** is between U and U + Z;. Now, using the
linearity of expectation,

B+ X0 - o0+ 2] - [ [00 00 ] -2 [so 2]

'This is known as the replacement method. In computer science, this is called the hybrid argument.
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Using a property of Gaussian moments,
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Since E[Z?] = E[X?].
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In total, we have
|E[¢(S)] = E[p(2))] < Y| E[w(H1)] — Bl (H,)]]
i=1

= 4
<> 1l - 7 EIX,
i=1 )

which completes the proof. ]

Really, our proof has proven the following:
Theorem 1.3. Let X4,..., X, andYy,...,Y, be independent random variables with E[Xf] =
E[Y/] for1 <i<nand1<j<3. Let Sx :=Y ;1 X; and Sy := Y ., Y;. Then

1
[E[(Sx)] — B (Sy)]l < 5219l - By
where By = > o E[X1] + E[YY].
1.2 The invariance principle

Here is an extension of our previous result.

Theorem 1.4. If X1,..., X, and Y1,...,Y, are independent R -valued random variables
with matching first and second moments and ¥ as bounded 3rd derivatives, then

5] == ()

Here is a second extension.
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Theorem 1.5 (Invariance principle). Let f : R™ — R be a multilinear polynomial of degree

d, i.e.
-y A e

SC[n] i€S

Let X1,..., X, ~ {£1} be independent random bits, and let Y1,...,Y, ~ N(0,1) be inde-
pendent standard Gaussians. Then

(4) n
B X)) = B V)l < o gt S e () i iy,

where Inf;(f) =3 g5, F(9)2.

Remark 1.2. Berry-Essen is the special case of this theorem with f(z) = >""" | a;z; with
>, a? =1 and Inf;(f) = a?.

Before we prove the theorem, let’s note that our Fourier analysis holds for polynomials
f:R" = R, not just f:{+1}" — R.

Proposition 1.1 (Plancherel’s identity). Let f,g : R™ — R be two multilinear polynomials:

= > FO]lw  a)= 3 9]
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Let Zy,...,7Z, be any independent random variable with mean 0 and variance 1. Then
E[f =2 Js
SCln]
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Since the Z; are indepedent,
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Corollary 1.1 (Parseval’s identity).

E[f(2)-1]=f(®), E|f(2)]]%|=F9.

€S

Bonami’s lemma still holds, as well, as long as the Z; are 9-reasonable.

Proof sketch of invariance principle. We want to show

Exp o Xumgz 3 [0 (X0, X))l = By oz, ono, ) [0(F (215 Z0))];

so define the hybrids
Hi = f(Zl,...,Zi,XiJ,—l,...,Xn).

As before, it suffices to show that for all i, E[)(H;_1)] = E[t)(H;)]. We can write
f(z) = z:Dif(z) + Ei f (2),

where D, f(X) and E;f(X) are independent of X;. Since H; and H,;_; only differ in the
i-th coordinate, we have

f(H;) =ZiDif(Z1, ..., ZiaXiv1, .. Xn) + Eif(Z1, ..., Zic1, Xiga, -, X)),

f(Hi—l) = XiDif(Zl, ey Zi,1X1+1, Ce ,Xn) + Eif(Zl, cey Zi—l, Xi+1, Ce ,Xn),

Now write

f(Hi)=Z;- A+ U, f(Hi1) = X; - A+ U.
We will finish the proof sketch next time. ]
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