Computer Science 294 Lecture 21 Notes

Daniel Raban

April 4, 2023

1 The Invariance Principle

1.1 Comparing random bits and Gaussians

Recall the Berry-Essen theorem, a quantitative version of the Central Limit Theorem:
Theorem 1.1 (Berry-Essen). Let X_{1}, \ldots, X_{n} be independent random variables with $\mathbb{E}\left[X_{i}\right]=$ $\mathbb{E}\left[X_{i}^{3}\right]=0$ and $\mathbb{E}\left[X_{i}^{2}\right]=\sigma_{i}^{2}$, where $\sum_{i=1}^{n} \sigma_{i}^{2}=1$. Let $S=X_{1}+\cdots+X_{n}$ and $Z \sim N(0,1)$. Then the CDF of S is $O(\beta)$-close to the CDF of Z, where $\beta=\sum_{i=1}^{m} \mathbb{E}\left[X_{i}^{4}\right]$.

The invariance principle relates the analysis of Boolean functions to the analysis of functions over Gaussians. If we think of X_{1}, \ldots, X_{n} as independent random bits, then the Berry-Essen theorem is a basic example of this principle.

Example 1.1. Let $x_{1}, \ldots, x_{n} \sim\{ \pm 1\}^{n}$, and let

$$
X_{1}=a_{1} x_{1}, \quad X_{2}=a_{2} x_{2}, \quad \ldots \quad X_{n}=a_{n} x_{n}
$$

If we take $S=\sum_{i=1}^{n} a_{i} x_{i}$, then $0=\mathbb{E}\left[X_{i}\right]=\mathbb{E}\left[X_{i}^{3}\right]$ with $\mathbb{E}\left[X_{i}^{2}\right]=a_{i}^{2} \mathbb{E}\left[x_{i}^{2}\right]=a_{i}^{2}$. Assume that $\sum_{i=1}^{n} a_{i}^{2}=1$. Then

$$
\beta=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}^{4}\right]=\sum_{i=1}^{n} a_{i}^{4} \leq \max _{i} a_{i}^{2} \sum_{i=1}^{n} a_{i}^{2}=\max _{i} a_{i}^{2} .
$$

If $a_{1}=a_{2}=\cdots=a_{n}=\frac{1}{\sqrt{n}}$, then $\beta=1 / n$. Then

$$
\frac{x_{1}+\cdots+x_{n}}{\sqrt{n}} \approx_{1 / n} Z
$$

Rather than comparing the CDFs, it will be more useful for us to work with the following notion of "closeness" of distributions: For any "nice" test function ψ,

$$
\mathbb{E}[\psi(S)] \approx \mathbb{E}[\psi(X)]
$$

Example 1.2. One class of test functions would be

$$
\psi_{t}(x)=\mathbb{1}_{\{x \leq t\}}
$$

This corresponds to CDF closeness:

$$
\mathbb{P}(S \leq t)=\mathbb{E}\left[\psi_{t}(S)\right] \approx \mathbb{E}\left[\psi_{t}(Z)\right]=\mathbb{P}(Z \leq t)
$$

Theorem 1.2. Let X_{1}, \ldots, X_{n} be independent random variables with $\mathbb{E}\left[X_{i}\right]=\mathbb{E}\left[X_{i}^{3}\right]=0$ and $\mathbb{E}\left[X_{i}^{2}\right]=\sigma_{i}^{2}$, where $\sum_{i=1}^{n} \sigma_{i}^{2}=1$. Let $S=X_{1}+\cdots+X_{n}$ and $Z \sim N(0,1)$, and let $\psi \in C^{4}$ with bounded 4th derivative. Then

$$
|\mathbb{E}[\psi(S)]-\mathbb{E}[\psi(Z)]| \leq\left\|\psi^{(4)}\right\|_{\infty} \cdot O(\beta),
$$

where $\beta=\sum_{i=1}^{m} \mathbb{E}\left[X_{i}^{4}\right]$.
Remark 1.1. To deal with non-smooth test functions like the example above, we can approximate ψ_{t} by $\widetilde{\psi_{t}}$, where $\widetilde{\psi_{t}}$ is a smoothed version of ψ_{t} with 4 th derivative $\leq 1 / \delta^{4}$:

This gives

$$
\left|\mathbb{E}\left[\psi_{t}(S)\right]-\mathbb{E}\left[\psi_{t}(Z)\right]\right| \leq O(\delta)+O(\beta) \cdot \frac{1}{\delta^{4}} \leq O(\delta),
$$

and we can then pick $\delta=\beta^{1 / 5}$.
Why do we need to care about the size of the derivatives? To differentiate $\frac{\frac{x_{1}+\cdots+x_{n}}{\sqrt{n}}}{}$ from $Z \sim N(0,1)$, we could try to use rapidly oscillating functions such as $\psi_{n}(x)=\cos (\sqrt{n} \cdot 2 \pi x)$. Then we would have $\mathbb{E}[\psi(S)]=1$ and $\mathbb{E}\left[\psi_{n}(Z)\right] \xrightarrow{n \rightarrow \infty} 0$.

Proof. To compare the sum $X_{1}+\cdots+X_{n}$ of random variables to $Z \sim N(0,1)$, we can write $Z=Z_{1}+\cdots+Z_{n}$, where the Z_{i} are independent Gaussians with $Z_{i} \sim N\left(0, \sigma_{i}^{2}\right)$. Note that $\mathbb{E}\left[Z_{i}\right]=\mathbb{E}\left[X_{i}\right]=0, \mathbb{E}\left[Z_{i}^{2}\right]=\sigma_{i}^{2}=\mathbb{E}\left[X_{i}^{2}\right]$, and $\mathbb{E}\left[Z_{i}^{3}\right]=0$ for all i.

How can we replace $X_{1}+\cdots+X_{n}$ with $Z_{1}+\cdots+Z_{n}$? One way is to replace one X_{i} with a Z_{i} at a time. ${ }^{1}$ Define the hybrid random variables

$$
H_{i}=Z_{1}+\cdots+Z_{i}+X_{i+1}+\cdots X_{n}
$$

Thus,

$$
H_{0}=X_{1}+\cdots X_{n}=S, \quad H_{n}=Z_{1}+\cdots+Z_{n}=Z .
$$

Now we can say

$$
\begin{aligned}
\mid \mathbb{E}[\psi(S)]-\mathbb{E}[\psi(Z)] & =\mid \mathbb{E}\left[\psi\left(H_{0}\right)\right]-\mathbb{E}\left[\psi\left(H_{n}\right)\right] \\
& =\left|\sum_{i=1}^{n} \mathbb{E}\left[\psi\left(H_{i-1}\right)\right]-\mathbb{E}\left[\psi\left(H_{i}\right)\right]\right|
\end{aligned}
$$

Using the triangle inequality,

$$
\leq \sum_{i=1}^{n}\left|\mathbb{E}\left[\psi\left(H_{i-1}\right)\right]-\mathbb{E}\left[\psi\left(H_{i}\right)\right]\right|
$$

H_{i-1} and H_{i} only differ in the i-th summand. In particular, we can write $H_{i-1}=U+Z_{i}$ and $H_{i}=U+X_{i}$, where $U=Z_{1}+\cdots Z_{i-1}+X_{i+1} \cdots+X_{n}$ is independent of Z_{i} and X_{i}. So it suffices to show that $\left|\mathbb{E}\left[\psi\left(U+X_{i}\right)\right]-\mathbb{E}\left[\psi\left(U+Z_{i}\right)\right]\right|$ is small. The idea, then, is to Taylor expand ψ around U.

Fix the value $U=u$, and write

$$
\psi(u+\delta)=\psi(u)+\psi^{\prime}(u) \cdot \delta+\psi^{\prime \prime}(u) \cdot \frac{\delta^{2}}{2!}+\psi^{\prime \prime \prime}(u) \cdot \frac{\delta^{3}}{3!}+\psi^{(4)}\left(u^{*}\right) \frac{\delta^{4}}{4!}
$$

where u^{*} is between u and $u+\delta$. Now we can write

$$
\begin{aligned}
& \psi\left(U+X_{i}\right)=\psi(U)+\psi^{\prime}(U) \cdot X_{i}+\psi^{\prime \prime}(U) \cdot \frac{X_{i}^{2}}{2!}+\psi^{\prime \prime \prime}(U) \cdot \frac{X_{i}^{3}}{3!}+\psi^{(4)}\left(u^{*}\right) \frac{X_{i}^{4}}{4!} \\
& \psi\left(U+Z_{i}\right)=\psi(U)+\psi^{\prime}(U) \cdot Z_{i}+\psi^{\prime \prime}(U) \cdot \frac{Z_{i}^{2}}{2!}+\psi^{\prime \prime \prime}(U) \cdot \frac{Z_{i}^{3}}{3!}+\psi^{(4)}\left(u^{* *}\right) \frac{Z_{i}^{4}}{4!}
\end{aligned}
$$

where U^{*} is between U and $U+X_{i}$ and $U^{* *}$ is between U and $U+Z_{i}$. Now, using the linearity of expectation,

$$
\left|\mathbb{E}\left[\psi\left(U+X_{i}\right)-\psi\left(U+Z_{i}\right)\right]\right|=\left|\mathbb{E}\left[\psi^{(4)}\left(U^{*}\right) \frac{X_{i}^{4}}{4!}\right]-\mathbb{E}\left[\psi^{(4)}\left(U^{* *}\right) \frac{Z_{i}^{4}}{4!}\right]\right|
$$

[^0]\[

$$
\begin{aligned}
& \leq\left|\mathbb{E}\left[\psi^{(4)}\left(U^{*}\right) \frac{X_{i}^{4}}{4!}\right]\right|+\left|\mathbb{E}\left[\psi^{(4)}\left(U^{* *}\right) \frac{Z_{i}^{4}}{4!}\right]\right| \\
& \leq\left\|\psi^{(4)}\right\|_{\infty} \frac{1}{4!} \mathbb{E}\left[X_{i}^{4}\right]+\left\|\psi^{(4)}\right\|_{\infty} \frac{1}{4!} \mathbb{E}\left[Z_{i}^{4}\right]
\end{aligned}
$$
\]

Using a property of Gaussian moments,

$$
=\left\|\psi^{(4)}\right\|_{\infty} \frac{1}{4!} \mathbb{E}\left[X_{i}^{4}\right]+\left\|\psi^{(4)}\right\|_{\infty} \frac{3}{4!}\left(\mathbb{E}\left[Z_{i}^{2}\right]\right)^{2}
$$

Since $\mathbb{E}\left[Z_{i}^{2}\right]=\mathbb{E}\left[X_{i}^{2}\right]$.

$$
=\left\|\psi^{(4)}\right\|_{\infty} \frac{1}{4!} \mathbb{E}\left[X_{i}^{4}\right]+\left\|\psi^{(4)}\right\|_{\infty} \frac{3}{4!}\left\|X_{i}\right\|_{2}^{4}
$$

Since $\left\|X_{i}\right\|_{2} \leq\left\|X_{i}\right\|_{4}$,

$$
\leq\left\|\psi^{(4)}\right\|_{\infty} \frac{4}{4!} \mathbb{E}\left[X_{i}^{4}\right] .
$$

In total, we have

$$
\begin{aligned}
|\mathbb{E}[\psi(S)]-\mathbb{E}[\psi(Z)]| & \leq \sum_{i=1}^{n}\left|\mathbb{E}\left[\psi\left(H_{i-1}\right)\right]-\mathbb{E}\left[\psi\left(H_{i}\right)\right]\right| \\
& \leq \sum_{i=1}^{n}\left\|\psi^{(4)}\right\|_{\infty} \cdot \frac{4}{4!} \mathbb{E}\left[X_{i}^{4}\right],
\end{aligned}
$$

which completes the proof.
Really, our proof has proven the following:
Theorem 1.3. Let X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} be independent random variables with $\mathbb{E}\left[X_{i}^{j}\right]=$ $\mathbb{E}\left[Y_{i}^{j}\right]$ for $1 \leq i \leq n$ and $1 \leq j \leq 3$. Let $S_{X}:=\sum_{i=1}^{n} X_{i}$ and $S_{Y}:=\sum_{i=1}^{n} Y_{i}$. Then

$$
\left|\mathbb{E}\left[\psi\left(S_{X}\right)\right]-\mathbb{E}\left[\psi\left(S_{Y}\right)\right]\right| \leq \frac{1}{24}\left\|\psi^{(4)}\right\|_{\infty} \cdot \beta_{X, Y},
$$

where $\beta_{x, Y}=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}^{4}\right]+\mathbb{E}\left[Y_{i}^{4}\right]$.

1.2 The invariance principle

Here is an extension of our previous result.
Theorem 1.4. If X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} are independent \mathbb{R}^{d}-valued random variables with matching first and second moments and ψ as bounded 3rd derivatives, then

$$
\mathbb{E}\left[\psi\left(\sum_{i=1}^{n} X_{i}\right)\right] \approx \mathbb{E}\left[\psi\left(\sum_{i=1}^{n} Y_{i}\right)\right] .
$$

Here is a second extension.

Theorem 1.5 (Invariance principle). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a multilinear polynomial of degree d, i.e.

$$
f(x)=\sum_{S \subseteq[n]} \widehat{f}(S) \prod_{i \in S} x_{i} .
$$

Let $X_{1}, \ldots, X_{n} \sim\{ \pm 1\}$ be independent random bits, and let $Y_{1}, \ldots, Y_{n} \sim N(0,1)$ be independent standard Gaussians. Then
$\left|\mathbb{E}\left[\psi\left(f\left(X_{1}, \ldots, X_{n}\right)\right)\right]-\mathbb{E}\left[\psi\left(f\left(Y_{1}, \ldots, Y_{n}\right)\right)\right]\right| \leq \frac{\left\|\psi^{(4)}\right\|_{\infty}}{24} \cdot 9^{d-1} \cdot \sum_{i=1}^{n} \operatorname{Inf}_{i}^{2}(f)\left(\mathbb{E}\left[X_{i}^{4}\right]+\mathbb{E}\left[Y_{i}^{4}\right]\right)$, where $\operatorname{Inf}_{i}(f)=\sum_{S \ni i} \widehat{f}(S)^{2}$.
Remark 1.2. Berry-Essen is the special case of this theorem with $f(x)=\sum_{i=1}^{n} a_{i} x_{i}$ with $\sum_{i} a_{i}^{2}=1$ and $\operatorname{Inf}_{i}(f)=a_{i}^{2}$.

Before we prove the theorem, let's note that our Fourier analysis holds for polynomials $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, not just $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$.
Proposition 1.1 (Plancherel's identity). Let $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be two multilinear polynomials:

$$
f(x)=\sum_{S \subseteq[n]} \widehat{f}(S) \prod_{i \in S} x_{i}, \quad g(x)=\sum_{S \subseteq[n]} \widehat{g}(S) \prod_{i \in S} x_{i} .
$$

Let Z_{1}, \ldots, Z_{n} be any independent random variable with mean 0 and variance 1. Then

$$
\mathbb{E}[f(Z) g(Z)]=\sum_{S \subseteq[n]} \widehat{f}(S) \widehat{g}(S) .
$$

Proof.

$$
\begin{aligned}
\mathbb{E}_{Z}[f(Z) g(Z)] & =\mathbb{E}\left[\left(\sum_{S \subseteq[n]} \widehat{f}(S) \prod_{i \in S} Z_{i}\right)\left(\sum_{T \subseteq[n]} \widehat{g}(T) \prod_{i \in T} Z_{i}\right)\right] \\
& =\sum_{S, T} \widehat{f}(S) \widehat{g}(T) \mathbb{E}\left[\prod_{i \in S} Z_{i} \cdot \prod_{i \in T} Z_{i}\right] \\
& =\sum_{S, T} \widehat{f}(S) \widehat{g}(T) \mathbb{E}\left[\prod_{i \in S \cap T} Z_{i}^{2} \cdot \prod_{i \in S \triangle T} Z_{i}\right]
\end{aligned}
$$

Since the Z_{i} are indepedent,

$$
\begin{aligned}
& =\sum_{S, T} \widehat{f}(S) \widehat{g}(T) \mathbb{E}\left[\prod_{i \in S \cap T} Z_{i}^{2}\right] \cdot \mathbb{E}\left[\prod_{i \in S \triangle T} Z_{i}\right] \\
& =\sum_{S} \widehat{f}(S) \widehat{g}(S) .
\end{aligned}
$$

Corollary 1.1 (Parseval's identity).

$$
\mathbb{E}\left[f(Z)^{2}\right]=\sum_{S} \widehat{f}(S)^{2}
$$

Proposition 1.2 (Inversion formula).

$$
\mathbb{E}[f(Z) \cdot 1]=\widehat{f}(\varnothing), \quad \mathbb{E}\left[f(Z) \prod_{i \in S} Z_{i}\right]=\widehat{f}(S)
$$

Define the derivative $D_{i} f(x)=\sum_{S \in i} \widehat{f}(S) \prod_{j \in S \backslash\{i\}} x_{j}$. Then

$$
\mathbb{E}\left[D_{i} f(Z)^{2}\right]=\sum_{S \ni i} \widehat{f}(S)^{2}=: \operatorname{Inf}_{i}(f)
$$

Bonami's lemma still holds, as well, as long as the Z_{i} are 9-reasonable.
Proof sketch of invariance principle. We want to show

$$
\mathbb{E}_{X_{1}, \ldots, X_{n} \sim\{ \pm 1\}}\left[\psi\left(f\left(X_{1}, \ldots, X_{n}\right)\right)\right] \approx \mathbb{E}_{Z_{1}, \ldots, Z_{n} \sim N(0,1)}\left[\psi\left(f\left(Z_{1}, \ldots, Z_{n}\right)\right)\right],
$$

so define the hybrids

$$
H_{i}=f\left(Z_{1}, \ldots, Z_{i}, X_{i+1}, \ldots, X_{n}\right)
$$

As before, it suffices to show that for all $i, \mathbb{E}\left[\psi\left(H_{i-1}\right)\right] \approx \mathbb{E}\left[\psi\left(H_{i}\right)\right]$. We can write

$$
f(x)=x_{i} D_{i} f(x)+E_{i} f(x),
$$

where $D_{i} f(X)$ and $E_{i} f(X)$ are independent of X_{i}. Since H_{i} and H_{i-1} only differ in the i-th coordinate, we have

$$
\begin{gathered}
f\left(H_{i}\right)=Z_{i} D_{i} f\left(Z_{1}, \ldots, Z_{i-1} X_{i+1}, \ldots, X_{n}\right)+E_{i} f\left(Z_{1}, \ldots, Z_{i-1}, X_{i+1}, \ldots, X_{n}\right) \\
f\left(H_{i-1}\right)=X_{i} D_{i} f\left(Z_{1}, \ldots, Z_{i-1} X_{i+1}, \ldots, X_{n}\right)+E_{i} f\left(Z_{1}, \ldots, Z_{i-1}, X_{i+1}, \ldots, X_{n}\right),
\end{gathered}
$$

Now write

$$
f\left(H_{i}\right)=Z_{i} \cdot \Delta+U, \quad f\left(H_{i-1}\right)=X_{i} \cdot \Delta+U
$$

We will finish the proof sketch next time.

[^0]: ${ }^{1}$ This is known as the replacement method. In computer science, this is called the hybrid argument.

